
www.SecurityXploded.com

http://www.securityxploded.com/

Disclaimer

The Content, Demonstration, Source Code and Programs presented here

is "AS IS" without any warranty or conditions of any kind. Also the

views/ideas/knowledge expressed here are solely of the trainer’s only and

nothing to do with the company or the organization in which the trainer is

currently working.

However in no circumstances neither the trainer nor SecurityXploded is

responsible for any damage or loss caused due to use or misuse of the

information presented here.

www.SecurityXploded.com

Acknowledgement

 Special thanks to null & Garage4Hackers community for their extended

support and cooperation.

 Thanks to all the Trainers who have devoted their precious time and

countless hours to make it happen.

www.SecurityXploded.com

Reversing & Malware Analysis Training

This presentation is part of our Reverse Engineering & Malware

Analysis Training program. Currently it is delivered only during our local

meet for FREE of cost.

For complete details of this course, visit our Security Training page.

www.SecurityXploded.com

http://securityxploded.com/security-training.php

harsimranwalia.info

 b44nz0r

 Research Scientist @ McAfee Labs

 Mechanical Engineer @IIT Delhi

 Independent Security Researcher

 RE, Exploit Analysis/Development, Malware Analysis

Twitter : b44nz0r

Email : walia.harsimran@gmail.com

http://twitter.com/b44nz0r

Outline

 Break Point

 Debug Registers

 Flags

 API Help

Types of Breakpoints

 Software

 Hardware

 Memory

Breakpoint

 Software breakpoints are set by replacing the instruction
at the target address with 0xCC (INT3/ Breakpoint
interrupt)

 Hardware breakpoints are set via debug registers. Only 4
hardware breakpoints can be set

 Debug registers:
 8 debug registers present

 DR0 – DR3 : Address of breakpoint

 DR6 : Debug Status – To determine which breakpoint is active

 DR7 : Debug Control – Flags to control the breakpoints such as
break on read or on-write

 Debug registers are not accessible in Ring 3

Hardware Breakpoints

Memory

 To access memory, need of permissions
 Lots of permissions

 PAGE_GUARD
 PAGE_READWRITE
 PAGE_EXECUTE
 PAGE_EXECUTE_READ

 To set memory breakpoint,
 the permissions of that memory region is set to

PAGE_GUARD
 whenever an access is made to that memory

STATUS_GUARD_PAGE_VIOLATION exception is raised
 On getting the exception the debugger changes the

permission back to the original
 Notifies the user of the breakpoint

Breakpoints

Flags (Eflags Register)

 1 register – 32 bits

 Each bit signifies a flag

 Few important ones are:

Bit # Abbreviation Description

0 CF Carry flag

2 PF Parity flag

4 AF Adjust flag

6 ZF Zero flag

7 SF Sign flag

8 TF Trap flag (single step)

9 IF Interrupt enable flag

11 OF Overflow flag

http://en.wikipedia.org/wiki/Carry_flag
http://en.wikipedia.org/wiki/Parity_flag
http://en.wikipedia.org/wiki/Adjust_flag
http://en.wikipedia.org/wiki/Zero_flag
http://en.wikipedia.org/wiki/Sign_flag
http://en.wikipedia.org/wiki/Trap_flag
http://en.wikipedia.org/wiki/IF_(x86_flag)
http://en.wikipedia.org/wiki/Overflow_flag

Flags Demystified

 Carry flag is used to indicate when an arithmetic carry or borrow has
been generated out of the most significant ALU bit position

 Parity flag indicates if the number of set bits is odd or even in the
binary representation of the result of the last operation

 Adjust flag is used to indicate when an arithmetic carry or borrow has
been generated out of the 4 least significant bits

 Zero Flag is used to check the result of an arithmetic operation,
including bitwise logical instructions. It is set if an arithmetic result is
zero, and reset otherwise

 Sign flag is used to indicate whether the result of last mathematic
operation resulted in a value whose most significant bit was set

 A trap flag permits operation of a processor in single-step mode

 Overflow flag is used to indicate when an arithmetic overflow has
occurred in an operation, indicating that the signed two's-
complement result would not fit in the number of bits used for the
operation

Basic Reversing Techniques

 Check for readable strings

 Import table (IAT) for imported Windows
API

 Setting breakpoint on interesting API

 Single stepping

Variables

 Found under Names tab
○ L - library function

○ F - regular function

○ C - instruction

○ A - ascii string

○ D - data

○ I - imported name

www.SecurityXploded.com

Contd..

 Global variables are generally dword_<address>
 dword_402000 – as shown in image

 Local variables are of the form var_<offset>

 var_6C – as shown in image

www.SecurityXploded.com

Loop in IDA

 Red Line

 If condition is false

 (zero flag = 0)

 Green Line

 If condition is true

 (zero flag = 1)

www.SecurityXploded.com

Reversing a Simple Crackme

Crackme Code

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main()

{

char a[10],b[10],c[10],d[10];

int i,j,k,l,r,s;

printf("#Crackme\n\n");

printf("enter username: ");

scanf("%s",a);

printf("enter password: ");

scanf("%s",b);

k = strlen(a);

l = strlen(b);

if (k <5 || k >=10){

printf("\nInvalid! Username Length\n");

printf("\nHit Enter to Exit\n");

getchar();

} else {

if (l != k){

printf("\nInvalid! Password Length\n");

printf("\nHit Enter to Exit\n");

getchar();

} else {

i = k-1;

j = 0;

while (i >= 0){

c[j] = a[i]+i;

i--;

j++;

}

c[j] = 0;

r = strlen(c);

if (r == l){

i = strcmp(c,b);

if (i == 0){

printf("\nCongratulations! You did it..\n");

printf("\nHit Enter to Exit\n");

} else {

printf("\nAccess Denied! Wrong Password\n");

printf("\nHit Enter to Exit\n");

References

 Complete Reference Guide for Reversing &

Malware Analysis Training

http://securityxploded.com/malware-analysis-training-reference.php
http://securityxploded.com/malware-analysis-training-reference.php
http://technet.microsoft.com/en-us/library/cc768129.aspx
http://en.wikipedia.org/wiki/Windows_API

Thank You !

www.SecurityXploded.com

http://www.securityxploded.com/

